Т_2.1. Первый закон Ньютона. Инерциальные системы отсчета.

1°. Динамика

Динамика изучает механическое движение, с точки зрения  причин, придающих движению тот или иной характер.

Для сравнения кинематика дает математическое описание механического движения, не останавливаясь на физических причинах того, почему движение происходит именно таким образом.

Основу динамики составляют законы Ньютона, которые фактически представляют собой обобщение большого числа опытных фактов и наблюдений.

 

2°. Свободное тело
Свободным (изолированным) телом называется тело, на которое не действуют какие-либо другие тела, либо  внешние воздействия имеются, но они компенсируют друг-друга.

ПРИМЕР Понятие свободного тела, с точки зрения полного отсутствия воздействий фактически является абстракцией, так как любые тела, даже находящиеся в далеком космосе, подвергаются в той или иной степени, гравитационному воздействию. А вот ситуация компенсации воздействий встречается очень часто, например карандаш ,лежащий на столе, подвергается гравитационному воздействию Земли, но оно компенсируется силой упругого воздействия поверхности стола. Так что обычный карандаш, лежащий на столе – пример свободного тела.

3°. Первый закон Ньютона

Первый закон Ньютона гласит: СВОБОДНОЕ тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние, другими словами пока тело является свободным – оно либо покоится, либо движется равномерно и прямолинейно.

Мысленный ОПЫТ Галилео Галилея

Из первого закона Ньютона следует важнейший вывод –

ПРИЧИНА ИЗМЕНЕНИЯ СКОРОСТИ ТЕЛА – НЕСКОМПЕНСИРОВАННОЕ ВОЗДЕЙСТВИЕ НА НЕГО ДРУГИХ ТЕЛ

Свойство свободного тела сохранять скорость неизменной называется инерцией. Поэтому первый закон Ньютона называют ещё законом инерции. Равномерное прямолинейное движение свободного тела называется движением по инерции.

Как показывает эксперимент, первый закон ньютона выполняется не всегда, будет ли он выполнятся зависит от выбора системы отсчета

Системы отсчета, в которых первый закон выполняется называют инерциальными, в которых не выполняется, соответственно не инерциальными.

4°. Инерциальные и не инерциальные система отсчета.  
Система отсчета является инерциальной, если ТЕЛО ОТСЧЕТА покоится или ДВИЖЕТСЯ БЕЗ УСКОРЕНИЯ.

По умолчанию системы отсчета, с которыми мы будем работать – являются инерциальными. Наиболее часто встречающийся пример инерциальной СО – это ЗЕМЛЯ.

Приведем ПРИМЕР НЕ инерциальной системы отсчета (в практике решения задач они встречаются очень редко)

Представьте такую ситуацию. Вы находитесь в купе поезда, который должен вот-вот отойти от станции. Окна закрыты шторками – вы не видите, движется ли поезд или покоится.

Перед вами на столике лежит бильярдный шар, он неподвижен.

Вдруг, внезапно, шар начинает двигаться. Почему, что изменилось? А изменения произошли с системой отсчета (она по умолчанию связана с поездом), – поезд начал ускоренно двигаться, система отсчета перестала быть инерциальной, а значит в ней возможно теперь ускоренное движение свободного тела, что мы и наблюдаем.

5°. Принцип относительности Галилея.
Галилей заметил, что, находясь в трюме корабля, никакими механическими опытами не возможно установить, покоится ли корабль или движется равномерно и прямолинейно. Это означает, что инерциальные системы отсчёта совершенно неотличимы друг от друга с точки зрения законов механики. Иными словами, верен принцип относительности Галилея.
Принцип относительности Галилея. Всякое механическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчёта.
Впоследствии Эйнштейн распространил этот принцип с механических явлений на вообще все физические явления. Общий принцип относительности Эйнштейна лёг в основу теории относительности.